
A Proxy Server Herd Application With asyncio

Nathan Smith – University of California, Los Angeles

Abstract
With the internet more accessible than ever, a plethora of server designs have emerged the meet the ever-changing
demands of people using web applications. This paper examines a possible “server herd” design using Python 3 and
Python’s asyncio asynchronous networking library for a Wikimedia-style news site, in which frequent updates are
expected via mobile clients and various protocols. A demo implementation of a server herd architecture is used to
discuss the pros and cons of Python and asyncio, and comparisons to both Java and Node.js are included.

1. Introduction
Wikipedia uses the widely-used LAMP (GNU/Linux,
Apache, MySQL, PHP) stack on multiple redundant
web servers with a load-balancer. This has obviously
proved to be a very successful architecture for Wiki-
pedia: it is the 5th most popular websites on the internet
as of March 2018 [1].

The rapid growth of hardware in the forms of mobile
devices, tablets, laptops, and routers, as well as soft-
ware in the forms of new web frameworks and server
applications have led to a much greater range of possi-
bilities for web sites and applications. However, with
these new technologies and possibilities also come a
new learning curve as well—modern server architec-
tures are much more complex than a simple LAMP
stack.

This paper looks at a different possible architecture—an
application server herd—for a supposed new Wikime-
dia-esque news site. This site expects frequent updates,
access via various protocols, and mobile clients. In or-
der to better accommodate these demands, this paper
discusses a demo server herd that has been implement-
ed in Python 3 with the asyncio module.

1.1. Asyncio
Asyncio is a fairly recent addition to the Python stan-
dard library, being first introduced in Python 3.4 by PEP
3156 [2]. Since then, both Python 3.5 and 3.6 have seen
substantial updates, both feature-wise and syntactically
to how the library works. Asyncio aims to give a stan-
dard solution to the problem of asynchronous I/O in
Python, which had previously been done via solutions
with tools such as WSGI, multiprocessing, gevent, Tor-
nado, or Twisted [3]. Asyncio draws a lot from Tornado
and Twisted, two popular asynchronous networking
libraries that handle asynchronous I/O via selector
loops, as well as other asynchronous languages such as
JavaScript.

2. Implementation
The prototype application written implements an appli-
cation server herd architecture, in which a “herd” of
servers communicate with each other to act as the ap-
plication’s database. A servers peers are predefined, and
servers communicate bidirectionally with each other via
a very basic flooding algorithm. Each server can accept
three possible commands, and will output an error if an
invalid command is given. Each command is described
briefly as follows.

The “IAMAT” command is a command sent via TCP
from a client, giving a server its location. The server
must then give the client a confirmation of receipt, store
the client’s location, and propagate this client and its
location to all other servers.

The “WHATSAT” command is a command sent via
TCP by the client to a server. It asks for a Google
Places Nearby Search query for the location of a speci-
fied client. Parameters are also given to define the ra-
dius and number of results.

The “AT” command is a command sent from server to
another server, in order to propagate a client’s location.
A server will keep a record of this client, similar to if it
received an “IAMAT” command directly from that
client and then send “AT” commands to all of its peers.

Each server also logs any relevant events that occur.

Note that there are improvements that could be made to
this demo as it is currently implemented. The flooding
algorithm could be replaced with a more efficient algo-
rithm. Another limitation is that if one server in the herd
was to go down then come back up, that server would
miss any new clients added to the herd and have no way
to obtain those clients. Both of these improvements are
beyond the scope of this demo, but are important to
consider should a application server herd be deployed
in a production environment.

For a greater, in-depth explanation of the exact demo
application behavior, I recommend you visit the project

specification by Paul Eggert at http://web.cs.ucla.edu/
classes/winter18/cs131/hw/pr.html.

3. Considerations
If considering Python and asyncio for a project, I would
recommend that the following points be weighed and
considered.

3.1. Structure
Asyncio is very unopinionated; it gives no standard
structure or format that programmers should follow. To
many, this is an advantage as it means that it can be
better customized and adapted to suit individual needs
but it also means that an organized and understandable
structure must be architected should asyncio be chosen
to be used in any large, production project.

3.2. Future Changes
It seems that Asyncio is still being actively developed
and changed. Both Python 3.5 and 3.6 introduced new
features including a new async/await syntax, asyn-
chronous generators, and asynchronous comprehen-
sions [4] [5] [6]. It is reasonable to assume the Asyn-
cio’s API may take a few more years to stabilize, so
ensuring that all asynchronous code is up-to-date may
be a non-trivial task.

3.3. Typing
As a language, Python is notable for being dynamically
typed. Dynamic typing means that each object is bound
to a type at runtime, as opposed to static typing in
which each object’s type is known at compile time.

Dynamic typing has both pros and cons. Dynamic typ-
ing allows programmers to build applications quicker as
they don’t have to specify types for each variable, but
being forced to specify types can help the compiler to
catch potential errors before runtime. Since ideally a
server herd would be used in production, a small trade-
off in development time for more reliable and less er-
ror-prone code seems like a worthwhile investment.
Therefore, the dynamic typing in our case is more a con
than a pro.

Python 3.6 saw the introduction of variable type anno-
tations which when used in conjunction with tooling
can provide much of the safety that static typing does
[7]. While Python is still a dynamically typed language,
I would strongly advocate the usage of type annotations
for any large project as it can mitigate some of the con-
cerns with the type system. Comprehensive testing of
code (which would hopefully be done for production
applications) can also mitigate type error concerns.

3.4. Asynchronous I/O and Multithreading
Python has support for multithreading through the
threading module in the standard library [8]. When us-
ing asyncio, multithreading is not required, but is possi-
ble. In the demo, I used a separate thread to run a sec-
ond event loop to fetch data from Google, to see how
multithreading with asyncio would function but the
same functionality could have easily been implemented
in the same loop.

As opposed to handling asynchronous I/O with separate
threads or processes, asyncio uses an event loop. An
event loop works by making notifying an “event
provider” when a particular event occurs. This provider
can then call an event handler that executes appropriate
code for the event.

Asynchronous I/O is a must for scalability, as it means
that new threads don’t have to be created as the applica-
tion gains more users. This means that the single thread
loop approach of asyncio has a big advantage over mul-
tithreaded applications.

In my experience with asyncio, this advantage comes
with a tradeoff of a learning curve: writing asyn-
chronous code is complicated, especially coming from a
background of only synchronous code. The library
comes with a large litany of terminology and ideas and
gives little in the way of examples. Furthermore, many
tutorials are already out of date given the syntax
changes in Python 3.5 and 3.6. Armin Ronacher per-
haps put it best when he wrote: “I can't help but get the
impression that it will take quite a few more years for it
to become a particularly enjoyable and stable develop-
ment experience” [9]. I’m inclined to agree. I see the
async module in Python as a very good step forward,
but think that as of now, the ecosystem needs a little
longer to grow and stabilize before writing code with it
can become enjoyable. That being said, asyncio does
make writing asynchronous code much easier than lan-
guages such as Java.

3.5. Memory Management
Python is notable in handling memory automatically
with a garbage collector; meaning that programmers
don’t have to worry about new and free and pointers
like in other languages. The Python memory manager
uses a private heap to allocate and deallocate all objects
and data types [10]. How Python’s garbage collector
works is dependent on the Python implementation.
CPython, the most popular implementation of Python,
uses a combination of reference counting and mark-
and-sweep garbage collection. This combination of
garbage collection techniques is specifically to address

http://web.cs.ucla.edu/classes/winter18/cs131/hw/pr.html
http://web.cs.ucla.edu/classes/winter18/cs131/hw/pr.html
http://web.cs.ucla.edu/classes/winter18/cs131/hw/pr.html

the problem of reference counting handling circular
references [11]. CPython’s implementation of garbage
collection is a major pro for our server herd uses, as it
means objects will be deleted quickly when they are no
longer used in addition to the fact that programmers do
not have to worry about manual memory management.

4. Alternative Technologies
4.1. Java
Java is a very popular language that can also used to
write networking applications.

Unlike Python, it is statically typed, which provides a
greater degree of potential type errors. In this area, Java
is better suited for the described server herd needs than
Python.

Java is also notable for automatically managing memo-
ry with a garbage collector, like Python. Java differs
from Python in its garbage collector’s implementation.
Java’s garbage collector is much more traditional. It
allocates objects in the heap, and garbage collects when
the heap is full. It also divides the heap into two genera-
tions, the nursery and old space to optimize memory
usage of the heap. Garbage collection works via a mark
and sweep strategy, in which all objects that are reach-
able are marked as alive, and all other parts of the heap
are put on the free list [12]. Java’s memory manage-
ment is not as good of a choice than Python’s for our
server herd. In Python, objects are deleted immediately
via reference counting. In Java, objects are not deleted
until they’re garbage collected, which doesn’t have to
happen immediately.

Java does not have an obvious equivalent to an asyncio
event loop, which means that asynchronous I/O would
need to be done via multithreading. For the server herd
application, this would mean more threads would need
to be created as more clients use the application. A Java
implementation would require much more resources as
the application grows as opposed to the Python one; the
Java approach with multithreading would simply not
scale as well. This comparison really highlights the
beauty of the event loop, and shows why it is so popular
for networking applications. The event loop is probably
the biggest reason for choosing Python over Java for a
server herd application; any language that does not sup-
port an event loop will not be as scalable.

4.2. Node.js
Ever since its initial release in 2009, Node.js has taken
the web development community by storm and is Stack
Overflow’s “Most Popular Framework Technology of
2017” [13]. Unlike Python, which has an asynchronous

event loop added on that has to be started by a blocking
call, Node.js is a fully asynchronous JavaScript runtime
that is asynchronous from the start [14].

Node.js appears to be a much more mature choice for
asynchronous network than Python and asyncio. It
boasts an multiple amazing package managers and the
largest collection of open source packages in the world.

5. Conclusion
Overall, it seems Python and asyncio is a fine choice for
a server herd architecture. Python and asyncio’s event
loop approach and reference counting offers major scal-
ability advantages over languages like Java. However,
Node.js also looks to warrant further consideration as
its large ecosystem, maturity, and promise of an asyn-
chronous runtime are quite promising.

References
[1] wikipedia.org Traffic Statistics, https://www.alexa.-
com/siteinfo/wikipedia.org.

[2] van Rossum, Guido. “PEP 3156 — Asynchronous
IO Support Rebooted: the “asyncio" Module”, https://
www.python.org/dev/peps/pep-3156/.

[3] Brown, Amber. “The Report of Twisted’s Death Or:
Why Twisted and Tornado Are Relevant in the Asyncio
Age”, Pycon 2016, http://lucumr.pocoo.org/2016/10/30/
i-dont-understand-asyncio/.

[4] Selivanov, Yury. “PEP 492 — Coroutines with
async and await syntax”, https://www.python.org/dev/
peps/pep-0492/.

[5] Selivanov, Yury. “PEP 525 — Asynchronous Gener-
ators”, https://www.python.org/dev/peps/pep-0525/.

[6] Selivanov, Yury. “PEP 530 — Asynchronous Com-
prehensions”, https://www.python.org/dev/peps/
pep-0530/.

[7] “typing — Support for type hints”, The Python
Standard Library, https://docs.python.org/3/library/typ-
ing.html.

[8] “typing — Support for type hints”, The Python
Standard Library,https://docs.python.org/3.6/library/
threading.html

[9] Ronacher, Armin. “I don't understand Python's
Asyncio”, http://lucumr.pocoo.org/2016/10/30/i-dont-
understand-asyncio/.

[10] “Memory Management”, Python/C API Reference
Manual, https://docs.python.org/3/c-api/memory.html.

https://www.alexa.com/siteinfo/wikipedia.org
https://www.alexa.com/siteinfo/wikipedia.org
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
http://lucumr.pocoo.org/2016/10/30/i-dont-understand-asyncio/
http://lucumr.pocoo.org/2016/10/30/i-dont-understand-asyncio/
http://lucumr.pocoo.org/2016/10/30/i-dont-understand-asyncio/
https://www.python.org/dev/peps/pep-0492/
https://www.python.org/dev/peps/pep-0492/
https://www.python.org/dev/peps/pep-0525/
https://www.python.org/dev/peps/pep-0530/
https://www.python.org/dev/peps/pep-0530/
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
https://docs.python.org/3.6/library/threading.html
https://docs.python.org/3.6/library/threading.html
http://lucumr.pocoo.org/2016/10/30/i-dont-understand-asyncio/
http://lucumr.pocoo.org/2016/10/30/i-dont-understand-asyncio/
http://lucumr.pocoo.org/2016/10/30/i-dont-understand-asyncio/
https://docs.python.org/3/c-api/memory.html

[11] “Why does python use both reference counting and
mark-and-sweep for gc?”, https://stackoverflow.com/
questions/9062209/why-does-python-use-both-refer-
ence-counting-and-mark-and-sweep-for-gc.

[12] “Understanding Memory Management”, Oracle
Diagnostics Guide, https://docs.oracle.com/cd/
E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/
garbage_collect.html.

[13] Stack Overflow Developer Survey Results 2017,
https://insights.stackoverflow.com/survey/2017#tech-
nology-frameworks-libraries-and-other-technologies.

[14] “About Node.js”, https://nodejs.org/en/about/.

https://stackoverflow.com/questions/9062209/why-does-python-use-both-reference-counting-and-mark-and-sweep-for-gc
https://stackoverflow.com/questions/9062209/why-does-python-use-both-reference-counting-and-mark-and-sweep-for-gc
https://stackoverflow.com/questions/9062209/why-does-python-use-both-reference-counting-and-mark-and-sweep-for-gc
https://stackoverflow.com/questions/9062209/why-does-python-use-both-reference-counting-and-mark-and-sweep-for-gc
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://insights.stackoverflow.com/survey/2017#technology-frameworks-libraries-and-other-technologies
https://insights.stackoverflow.com/survey/2017#technology-frameworks-libraries-and-other-technologies
https://nodejs.org/en/about/

